

直流化への期待と 省エネルギー技術開発

平成21年 7月28日

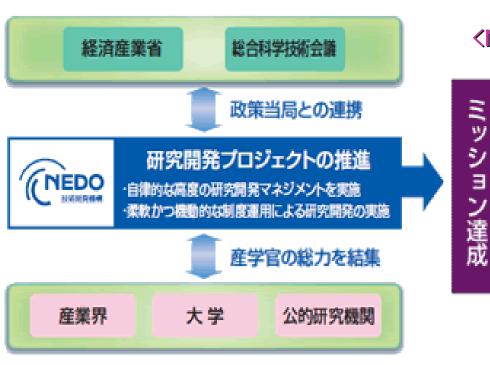
省エネルギー技術開発部 主任研究員 酒井 清

独立行政法人 新エネルギー・産業技術総合開発機構

目次

- O. NEDOについて
- 1. Cool Earth-エネルギー革新技術計画
- 2. グリーンITプロジェクト
 - グリーンネットワークシステム技術
 - データセンタの電源システムと最適直流化技術の開発
 - •最適直流化に期待すること
- 3. 次世代高効率エネルギー利用型住宅システム技術開発・実証事業
 - ・交流・直流配線システムに期待すること
- 4. ゼロエミッション・ビル(ZEB)
- 5. 省エネルギー革新技術開発事業

NEDOについて



事業概要

- 産業技術、新エネルギー及び省エネルギー技術に関する研究開発事業
- 新エネルギー・省エネルギーの導入普及事業
- ●その他

沿革 2003. 10

独立行政法人化 「(独)新エネルギー・産業技術総合開発機構」へ

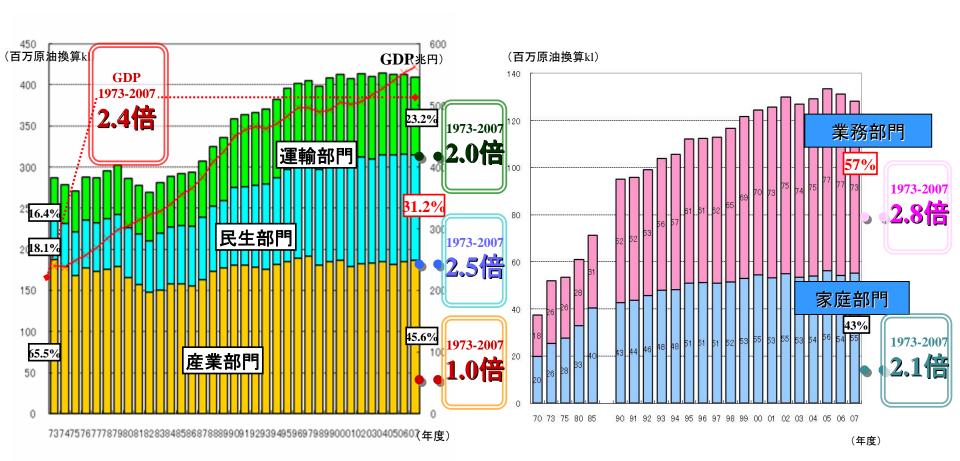
予算 約2,347億円(平成21年度)

〈NEDOの役割〉

◆研究開発をトータルコーディネート

産学官の総力を結集して、優れた研究開発 を生み出すために研究開発をトータルコー ディネートしています。

◆研究開発マネジメントのプロ


技術シーズの発掘から中長期的プロジェクトの推進、実用化開発の支援まで、研究開発マネジメントのプロを目指します。

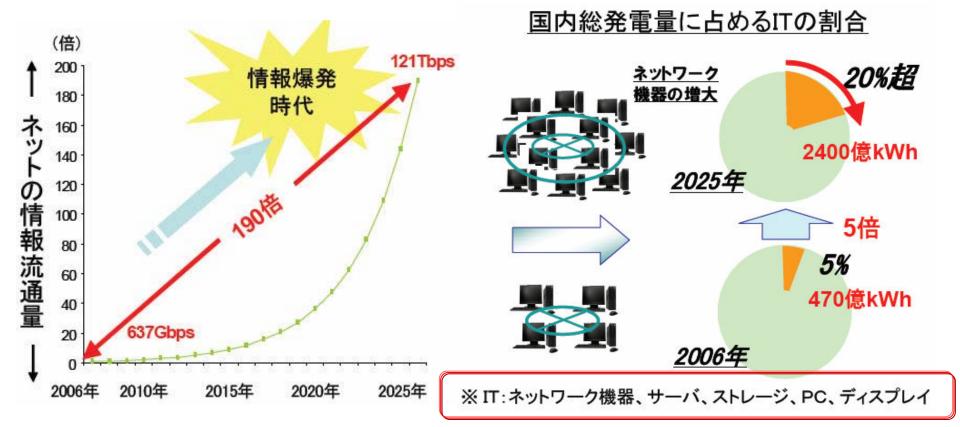
我が国の最終エネルギー消費と民生部門のエネルギー消費の推移

【最終エネルギー消費と実質GDPの推移】

【業務/家庭部門の内訳】

1. Cool Earth-エネルギー革新技術計画

一重点的に取り組むべきエネルギー革新技術 —


エネルギー源毎に、供給側から需要側に至る流れを俯瞰しつつ、効率の向上と低炭素化の 両面から、CO2大幅削減を可能とする「21」技術を選定。

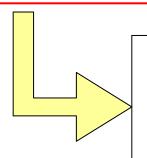
2. グリーンITプロジェクト

- 〇本格的なIT化に伴い、動画像の送配信や各種ITサービスが普及し、 社会で扱う情報量は2025年には約200倍になると見込まれている (情報爆発)
- 〇その結果、IT機器による消費電力量が急増し、2025年には5倍になるなど、深刻な課題になりつつある。

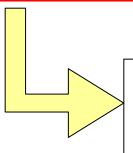
グリーンITプロジェクト 2008年度開始

・冷却技術等により、データセ

ンタの消費電力を30%削減。


	2008	2009	2010	2011	2012
	超	高密度ナ	/ビット磁気	記録技術	
デバイス					緑密度化を図り、 とりの消費電力を
	次世代大型有機ELディスプレイ基盤技術				
機器				製造基盤技術 40inch以上で 消費電力を目	で40W以下の低
	グリーンネットワーク・システム技術				
ネットワーク					川御技術により、 『力を30%削減。

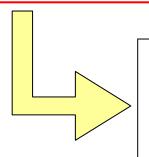
グリーンネットワーク・システム技術研究開発


(グリーンITプロジェクト)

エネルギー利用最適化データセンタ基盤技術の研究開発

- a) サーバの最適構成とクラウド・コンピューティング環境における 進化するアーキテクチャーの開発
- b) 最適抜熱方式の検討とシステム構成の開発
- c) データセンタの電源システムと最適直流化技術の開発
- d) データセンタのモデル設計と総合評価

革新的省エネルギーネットワーク・ルータ技術の研究開発


- a)IT社会を遠望した、情報の流れと情報量の調査研究
- b) 情報のダイナミックフロー測定と分析ツール 及び省エネルギー型ルータ技術の開発
- c) 社会インフラとしてのネットワークのモデル設計と総合評価

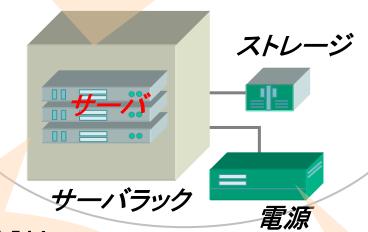
プロジェクト基本計画 (データセンタ)

~データセンタの年間消費電力量を30%以上削減~

エネルギー利用最適化データセンタ基盤技術の研究開発

- a) サーバの最適構成とクラウド・コンピューティング環境における 進化するアーキテクチャーの開発
- b) 最適抜熱方式の検討とシステム構成の開発
- c) データセンタの電源システムと最適直流化技術の開発
- d) データセンタのモデル設計と総合評価

- 〇コンピュータの世代交代の概念を取り入れる
 - → 進化する・・・
- 〇対症療法と根源にメスの2方向から取り組む
 - → 熱を直接取る、電気を使わない・・・
 - → 省エネ型、電源を含むコンピュータ・アーキテクチャー
- 〇総合評価
 - → 複数モデルと複数世代・・・


エネルギー利用最適化データセンタ基盤技術の研究開発

サーバの最適構成とクラウド・コンピューティング環境 における進化するアーキテクチャーの開発

- *光化技術
- ・クラウド技術
- ・ストレージ省電力技術

元を絶つ

総合評価

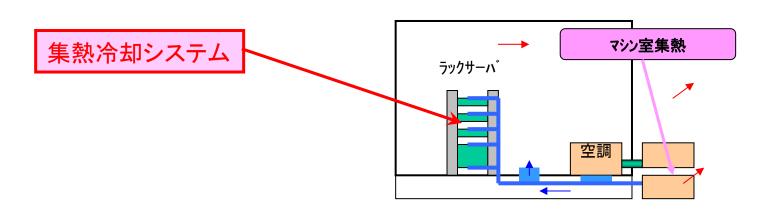
データセンタ

最適抜熱方式の検討と システム構成の開発

今の不合理を解消する

かけ算で効く電源と直流化

エネルギー利用最適化データセンタ基盤技術の研究開発(NEDO

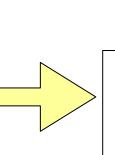


最適抜熱方式の検討とシステム構成の開発

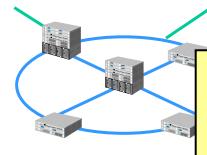
<u>冷却ネットワークとナノ流体伝熱による集中管理型先進冷却</u> システムの開発

> 薄型ヒートパイプ、ナノ流体 プラグイン・・・

集熱冷却システムの開発



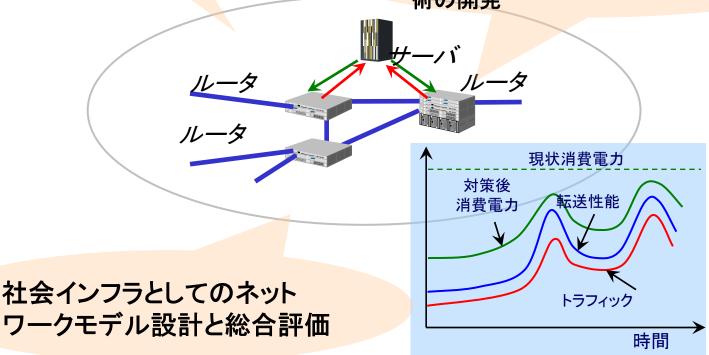
プロジェクト基本計画 (ネットワーク)



~ネットワーク部分の年間消費電力量を30%以上削減~

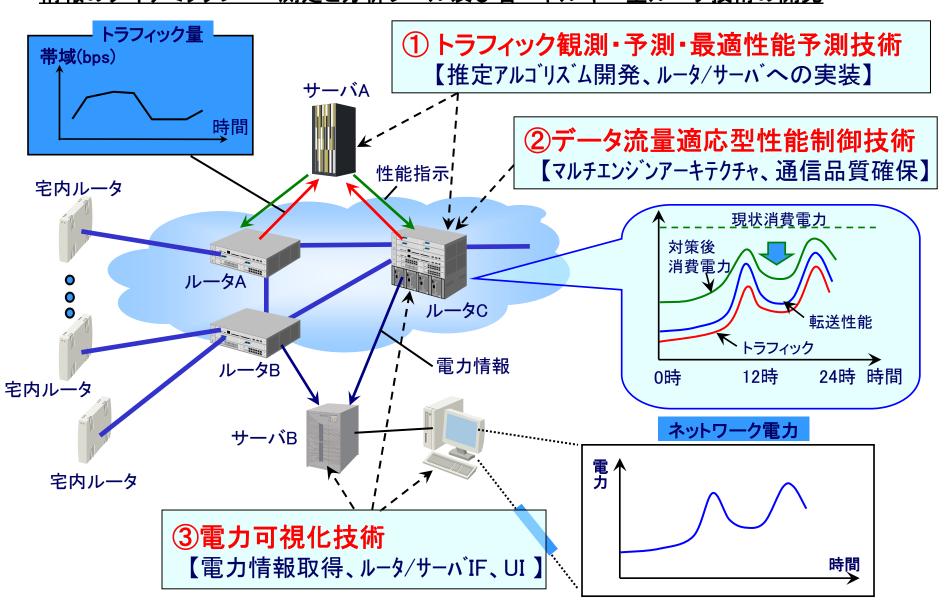
革新的省エネルギーネットワーク・ルータ技術の研究開発

- a) IT社会を遠望した、情報の流れと情報量の調査研究
- b) 情報のダイナミックフロー測定と分析ツール 及び省エネルギー型ルータ技術の開発
- c) 社会インフラとしてのネットワークのモデル設計と総合評価


- 〇幾何級数的に増加する情報量をダイナミックに把握する
 - → 調査により、全体把握を行い、要求事項とする
- ○現行ルータには、リアルタイム測定・予測制御の概念を入れる
 - → 処理量と電力消費の観測・分析そして予測制御・・・
- 〇総合評価
 - → 直近モデルと将来の姿からの要求システムの評価・・・

革新的省エネルギーネットワーク・ルータ技術の研究開発

IT社会の情報の流 れと情報量調査


> 情報のダイナミックフロー測定と分析 ツール及び省エネルギー型ルータ技 術の開発

革新的省エネルギーネットワーク・ルータ技術の研究開発

<u>情報のダイナミックフロー測定と分析ツール及び省エネルギー型ルータ技術の開発</u>

グリーンネットワーク・システム技術開発の目的



- ① 省エネルギー効果の高いデータセンタ・サーバ及び ネットワーク・ルータの実用化促進を実現するための 技術開発
- ② データセンタの年間消費電力量を30%以上削減
- ③ ネットワーク部分の年間消費電力量を30%以上削減

30%省エネルギーの達成

グリーンネットワーク・システム技術研究開発

PUE: Power Usage Effectiveness

エネルギー利用最適化データセンタ基盤技術の研究開発

データセンタの電源システムと最適直流化技術の開発(昨年度調査)

調査事業:サーバにおける情報と電力のダイナミックフロー観測 技術、電源の アダプティブマネージメントの要素技術及び電源システムの最適設計

- •情報と電力のリアルタイム測定技術
- 電源のアダプティブマネージメントの要素技術
- ・電源システムの最適設計

等々の調査、技術開発の必要性調査

調査事業:データセンタ及びサーバの電源システム最適直流化、直流を利用する 上での信頼性・安全性確保に必要な要素技術

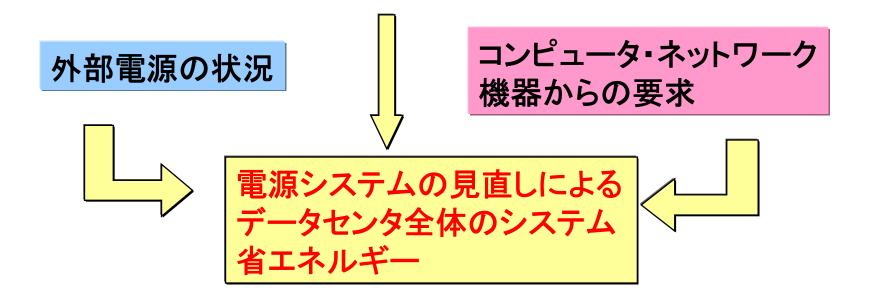
- •電源システム最適直流化
- •直流を利用する上での信頼性・安全性確保に必要な要素技術
- 等々の調査、技術開発の必要性調査
- →直流化そのものの技術課題は、大型化に絞られてきつつある

「データセンタの電源システムと最適直流化技術の開発」として公募、現在採択審査中

データセンタの電源システム技術に期待すること 例

瞬低・電圧低下等の電力品質の確保すべき時間

データセンタの最適直流化技術に期待すること 例



半導体技術

見える化技術

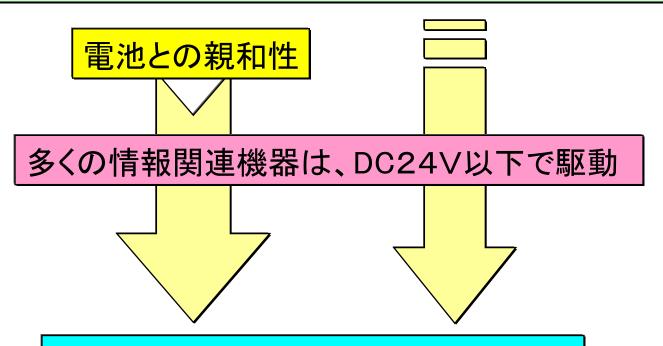
電池、キャパシタ等技術

(直流の遮断を含む電力制御技術が確立)

さらにクラウドコンピューティング技術により、 電源への要求がより緩和される?

電源システムから見たデータセンタ省エネ

- ① 電源品質、信頼性の確保と設計バランス →MTBF、MTTR、故障確率等で評価、最適化
- ② 直流化(部分)による合理的なシステム構成 →商流からして必ず残る交流系とのバランス
- ③ クラウドコンピューティング技術とバックアップ →電源への要求品質のより低減が可能
- ④ コンピュータ、ネットワーク機器との協調省エネ →見える化そして、予測制御とアダプティブ
- ⑤ 合理的電源システムの設計、最適設計 →どこかに消えてる待機電力レス、小型化
- ⑥ 電圧等の変換段数の適正化によるロス低減 →アース、ノイズ対策と適正な変換段数
- ⑦ 電源システム技術で新産業の創生へ →全てが揃う日本発の電源システム技術


MTBF: Mean Time Between Failure 平均故障間隔

MTTR: Mean Time To Repair 平均復旧時間

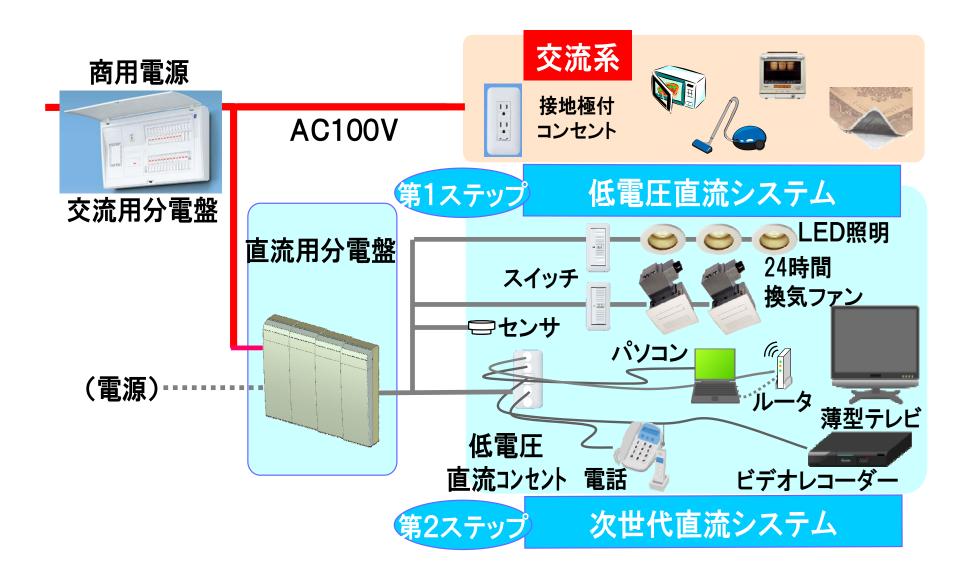
3. 次世代高効率エネルギー利用型住宅システム技術開発・実証事業 (NEDO

直流で発電する太陽光発電、燃料電池等分散電源

住宅への低電圧直流インフラの必要性 安全を確保し、標準化の時期に

DCハウス

研究開発課題


- ①「住宅内交流・直流システムの実証」
 - (1)低電圧(48V以下)直流配線の実住宅での設置
 - (2)安全等実運用に関わる技術課題の抽出と検討
 - (3)交流・低電圧直流システムによる省エネルギー可能性検討
- ②「住宅内直流システム・情報ネットワーク融合可能性」 直流配線と交流配線、無線ネットワークとの融合可能性
- ③「有識者委員会等による次世代直流システムの検討」

①、②の項目について、公募、パナソニック電工様(全体)、シャープ様(部分)採択、③について公募予定

住宅内交流・(低電圧)直流システムのイメージ

交流・直流配線システムに期待すること

低電圧直流配線を社会インフラとして考える

その第一歩!

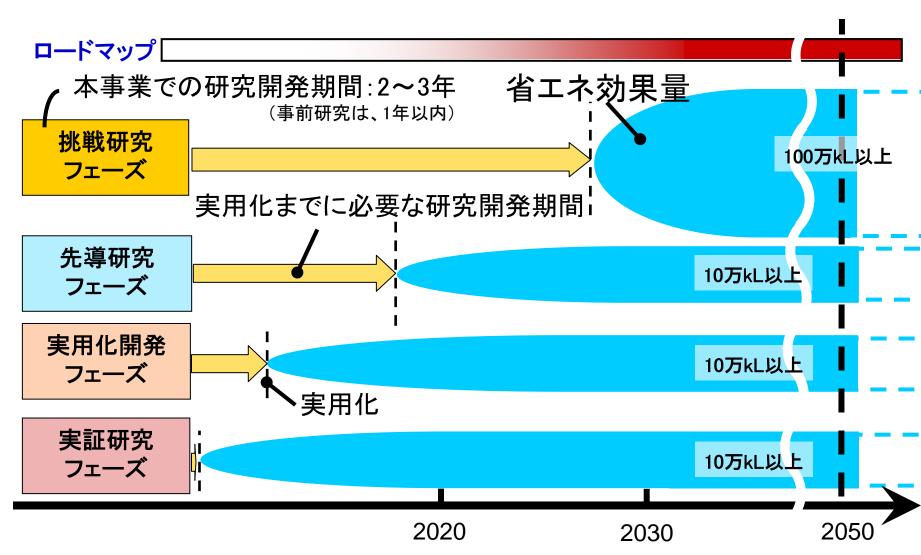
- ・安全インフラ(火災報知器等)との親和性
- ・情報通信機器への直流配線の親和性
- ・自動車等の直流機器普及による市場性
- 低消費電力機器の電気変換ロスレス
 - ・電池、各種センサ電源との親和性
 - 安全性、取り扱いの容易性

普及するには、社会的合理性がなくてはならない

電力事情の悪い海外を含めた、新事業創生と展開

家庭は、交流200Vと低電圧直流配線になるのか??

4. ゼロ・エミッション・ビル(ZEB) 21年度事業公募中


- 〇オフィス・事務所、商業ビル等の業務部門については、エネルギー消費が1990年比で4割程度増加しており、省エネ対策の強化が極めて重要。
- ○他方、我が国のエネルギー制御技術・省エネ設備は世界トップレベル。
- ○我が国の先進的な技術・設備を、運用も含めたトータルシステムとして統合・技術開発することにより、建築物における省エネ性能を飛躍的に高めることを目指す。
- Oこれにより、2030年までに新築公共建築物のゼロエミッション化(ゼロ・エミッション・ビル: ZEB)を目指した技術開発を進める等、建築物のゼロエミッション化の加速的展開を図る。

事業の内容

- ○建築物・設備の省エネ性能の向上や敷地内の再生可能エネルギーの活用等により、建築物のエネルギー起源CO2排出量のゼロを目指すゼロ・エミッション・ビルを加速的に展開する。
- ○革新的空調技術や自然採光を取り入れた自動制御による照明技術、これらを統合制御するシステム等の信頼性、得られる省エネ効果等の実証を行う。
- ○さらに、公共建築物や民間ビルのうち、省エネ効果が高いものにつき、省エネ診断及び改修を促進する(当面3年間、重点実施)。

5. 省エネルギー革新技術開発事業(約70億) (昨年:エネルギー使用合理化技術戦略的開発)

Cool Earth-エネルギー革新技術計画に則り、事業化へのストーリーを展開

エネルギー使用合理化技術戦略的開発(旧)

現在79件実施中(2008年)

平成20年度 実施テーマ例

コンセプト	先導研究 フェーズ	実用化開発 フェーズ	実証研究 フェーズ			
超燃焼システム 技術	高温タービンディスク革新的製銑プロセスコンビナートエネルギーマテリアル融通	コプロダクション設計手法ツール開発内部熱交換型蒸留塔大処理量化ターボ冷凍機の高効率化	・ガス拡散電極食塩電解法・単結晶動翼ガスタービン			
時空を超えた エネルギー 利用技術	・水素貯蔵装置及び水電解・ FC一体型セル		・エコドライブ用蓄熱空調 ・水和物スラリを用いた潜熱 空調システムの開発			
省工ネ型 情報生活空間 創生技術	・簡易型HEMS ・生活行動応答型省エネシス テム	高効率有機EL照明超薄型大画面フィルム型自発光表示装置	・食品スーパー向けエネル ギーマネジメントシステム			
先進交通社会 確立技術	・2次電池駆動式私鉄省エネ・電動駆動車輌用インホイールモータ・船舶用高温超電導モータ内蔵ポッド推進	・マイクロ波プラズマ燃焼エンジン ・非接触給電装置				
次世代省エネ デバイス技術	・近接場光エッチング平面加工・大面積SiC基盤技術・ディスプレイ用可視光レーザ	・パワー素子用SiC単結晶基板 ・溶液成長SiC単結晶 ・光通信用半導体レーザ				

省エネルギー革新技術開発事業 (現在二次公募中)

21年度一次公募 民生系で21件が採択

- モバイルセンサ、小型電力センサ
- ・有機EL照明フィルム、ガラス蛍光体照明
- ・ヒーポン次世代空調、ヒーポン *μ* フィン
- ・光スイッチング光ネットワーク
- •極限CMOS、近接場光超平坦化
- ・レーザ低摩擦表面処理、ナノ加工超短パルスレーザ
- ・強誘電体フラッシュメモリ、次世代ゲート絶縁膜、
- ・マルチチップ積層、EUVレーザ、不揮発SW
- •FEL照明、プリンタブル有機EL素子、
- ・加工用超短パルスレーザ

他

赤字:直流化に直接乃至間接的に関係してくる研究

次世代の社会インフラへのパラダイムシフト

そして、世界が変わって行く

両方を 使いこなす

X

パワー (積算、積分)

交流・直流 ・・・

情報(変化、微分)

高周波•無線•光 •••